Stage of Quasi-steady Propagation in Premixed Flame Acceleration in Narrow Channels
نویسندگان
چکیده
The present work investigates the spontaneous acceleration of premixed flames in micro-channels in the process of deflagration-to-detonation transition. It has recently been shown experimentally [Wu et al., Proc. Combust. Inst. 31 (2007) 2429], computationally [Valiev et al., Phys. Rev. E 80 (2009) 036317] and analytically [Bychkov et al., Phys. Rev. E 81 (2010) 026309] that the flame acceleration undergoes a number of stages from an initial exponential regime to quasi-steady fast deflagration. The present work focuses on the final saturation stages in the process of flame acceleration, during which the flame propagates with supersonic velocity with respect to the tube wall. It is shown that an intermediate stage with quasi-steady velocity noticeably below the Chapman-Jouguet deflagration speed may be observed during the acceleration process. The intermediate stage is followed by additional flame acceleration and subsequent saturation to the Chapman-Jouguet deflagration regime. We explain the intermediate stage by the combined effects of gas pre-compression ahead of the flame front and the hydraulic resistance. We estimate the first quasi-steady saturation velocity theoretically and compare it with the numerical results. Numerical simulation shows that, in agreement with the theoretical prediction, heating due to viscous stress at the wall is minor before the flame reaches the first quasi-steady stage and is prevailing afterwards. The additional acceleration is related to viscous heating at the channel walls, being of key importance at the final stages. The possibility of explosion triggering is also demonstrated.
منابع مشابه
Heat Recirculation Effect on the Structure of Wood Dust Flame Propagation
A model for heat-recirculating micro combustor is developed. It investigates the structure of laminar, one-dimensional and steady state flame propagation in uniformly premixed wood particles with considering the effects of heat recirculation caused by configuration of micro combustor. The flame structure is divided into three regions: a preheat-devolatilization zone where the rate of the gas-ph...
متن کاملPulsating and Hydrodynamic Instabilities at Large Lewis Numbers
The dynamic behavior of freely propagating premixed flames with large Lewis numbers was computationally simulated using a sixth-order central difference scheme and non-reflective boundary conditions. Results in the linear stage of the instability growth show that the growth rate dramatically decreases with increasing Lewis number and that the large activation energy excites the pulsating instab...
متن کاملTaylor dispersion and thermal expansion effects on flame propagation in a narrow channel
We investigate the propagation of a premixed flame subject to thermal expansion through a narrow channel against a Poiseuille flow of large amplitude. This is the first study to consider the effect of a large-amplitude flow, characterised by a Péclet number of order one, Pe= O(1), on a variable-density premixed flame in the asymptotic limit of a narrow channel. It is also the first study on Tay...
متن کاملInfluence of Conductive Heat-Losses on the Propagation of Premixed Flames in Channels
We study the propagation of premixed flames in two-dimensional channels accounting for heat-losses by conduction to the channel’s walls and a prescribed Poiseuille flow. A diffusive-thermal model is used and the calculations reported are based on Arrhenius-type chemistry. Attention is focused on the influence of the magnitude of heat losses, the channel width, and the mean flow velocity. Specia...
متن کاملOscillatory flame edge propagation, isolated flame tubes and stability in a non-premixed counterflow
An investigation is carried out into the ranges of Damköhler number and Lewis number, less than unity, in which different forms of combustion phenomena arise within a non-premixed counterflow; cases that are symmetrical across the counterflow are chosen for study. These link oscillatory and steady propagation of flame edges, zero propagation speeds, isolated flame tubes, quenching and marginal ...
متن کامل